Graphene sheet

Could the next generation of electronics be made with graphene?

While it may look like little more than molecular chicken wire, graphene really is wonderful stuff. A sheet of carbon atoms naturally forms into a geometrically perfect set of hexagons and, since it was first chemically synthesised in 2004, researchers across the world have been investigating its potential for uses in a wide variety of ways – everything from DNA sequencing to hunting for it in interstellar space!

One of the biggest potentials for graphene, however, is in electronics. As graphite (a naturally occurring mineral), carbon is semiconductive. Due to the way carbon atoms are arranged in this hexagonal pattern, it leaves some electrons free to move across the material in a way not entirely unlike the way the motion of free electrons allows metals to be conductive. However, pure graphite isn’t really very conductive. Pure graphene is a much better conductor, but a single sheet of atoms is quite delicate and difficult to engineer into anything by itself.

The latest development in the story though, is courtesy of the Royal Melbourne Institute of Technology and the Commonwealth Scientific and Industrial Research Organisation (CSIRO), where research has been underway to make high grade electronics with graphene. Their recent success came from a layered material made from graphene and tiny crystals of molybdenum oxide. By using a process called exfoliation, the layers in this material are a mere 11 nm thick, and electrons are able to move freely through it without any scattering from impurities in the material (one of the main limiting factors in any system of electronics). Free from such obstructions, electroncs can flow through this new material at high speeds.

You see, electronics is one of the fastest progressing types of technology in the world today. Moore’s Law is a principle which states that approximately every two years, the number of transistors in electronic circuitry – and therefore the overall speed of computers – doubles every two years. This trend has been continuing for over half a century now; the average mobile phone today probably has more computing power than Apollo 11 did when it travelled to the Moon.

But the growth of electronics is predicted to start slowing down, not because technology will stop progressing, but because we’re expecting to reach the limit of what’s possible with our current silicon-based electronics technology. For electronics to continue improving, new and faster materials are required. Graphene-based technology may well hold the key to the future of electronics. CSIRO’s Serge Zhuiykov, spokesman for the Australian researchers involved in this project, believes it could be, stating, “Quite simply, if electrons can pass through a structure quicker, we can build devices that are smaller and transfer data at much higher speeds.”

While these new technologies aren’t ready to be used in electronics yet, there’s a lot of effort being made globally to try and find ways to do so. Who knows? Perhaps in a decade or two we’ll all have touchscreen devices and flexible electronics based on graphene circuitry. Personally, given how remarkable modern electronics already are, I have a feeling the future is going to continue to be very interesting indeed!

Image credit: AlexanderAlUS/Wikimedia Commons

Cite this article:
Hammonds M (2013-02-04 00:19:58). Could the next generation of electronics be made with graphene?. Australian Science. Retrieved: Dec 18, 2014, from http://www.australianscience.com.au/technology/could-the-next-generation-of-electronics-be-made-with-graphene/

Markus

AUTHOR: Markus Hammonds

Markus Hammonds is a research fellow at the University of Tokyo who spends his life looking at very small things on very large scales, and trying to better understand the chemistry of interstellar space. He also writes for several science blogs, and is an advocate of the idea that science can and should be for everyone. When not busy being sciencey, he can often be found playing a ukulele, drinking mojitos or staring at the sky. Markus can be contacted via his personal blog at supernovacondensate.net or on twitter as @InvaderXan
.

4 Comments

Comments are closed.